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L E V E L  R E C O V E R Y  C U R V E  I N  T H E  R E L A X A T I O N  

T H E O R Y  O F  F I L T R A T I O N  

O. Yu. Dinariev UDC 532.546 

A problem on the level recovery curve in the relaxation theory of  filtration is considered when there is a 

cont inuous spectrum of  internal relaxation times. An asymptotics at large times is f o u n d  as a func t ional  o f  

a relaxation kernel. An explicit expression with two additional parameters characterizing the relaxation 

kernel is calculated for  a power spectrum of  internal relaxation processes in a rock-saturating f lu id  system. 

Darcy ' s  law in the linear theory of fil tration is valid only for processes where characterist ic  times of change 

in macroscopic parameters  (for example, of a pressure gradient) are much larger than the characteristic internal  

relaxation time in a porous medium-saturat ing fluid system on a microlevel. Otherwise, it is necessary to use 

generalizations of Darcy ' s  law by the re laxat ion theory of filtration that were suggested in [1-6 ]. There  are  

situations when a relaxation law of filtration can be strictly derived from the kinetic theory  [7 ]. 

Internal relaxat ion processes can be manifested in nonstationary hydrodynamic  investigations of wells; 

therefore, on interpretat ion they should be taken into account along with such factors affecting the dynamics as 

the geological s t ructure  of a well-botton zone. Previously, the theoretical results were concerned  with the form of 

the pressure recovery curve (PRC) over an initial section [8 ] and with the asymptotics of the PRC at large times 

for discrete and continuous spectra of internal  relaxation times [9, 10 ]. 

In the present  work within the framework of relaxation isothermal theory of fi l tration we investigate the 

problem on a level recovery curve (LRC) in a vertical well for a case of a single-phase slightly compressible liquid' 

in a homogeneous isotropic collector. 

For the a rb i t ra ry  time function f = f ( t )  we denote the Fourier transformation by the symbol fF = fv(c~ 

fF (~~ = f exp( - -  iwt) f (t) d t .  
- o o  

In the relaxat ion theory of filtration Darcy 's  law is generalized in the following m a n n e r  [1-6 ]: 

i u (t o , x  i ) = - k m  -1 f K ( t  o - t) ~  (t, x/) d r ,  (1) 
- o ~  OX l 

where G = p + pU; i, j run over the values 1, 2, 3, which correspond to Cartesian coordinates  X i. 

The  kernel K -- K(t)  describes internal  relaxation processes in the porous medium-satura t ing  fluid system. 

For the kernel some conditions are fulfilled: 

1) K(t)  is a nonnegative monotonically decreasing function that has the dimensional i ty  t - i ;  
+ o o  

2) f K( t )d t  = 1 is the condition for reduction of (1) to Darcy's  law for slow processes; 
- - o o  

3) K(t)  = 0 with t < 0 (causality); 0 < K(0) < + o~ is the condition of signal-velocity finiteness [ 11 ]; 

4) Re KF(CO) > 0 with Im oJ _< 0 is the dissipalivity condition 14, 6 ]. 

By virtue of condition (3) in accordance with a Pa l ey -Wiene r  theorem 112 ] the function KF = Kv(w) in 

the lower half-plane of the complex plane is holomorphic. 
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From condition 2) it follows that  

K F (0) = l . (2) 

For  the re laxat ion kernel  we take an express ion  that  corresponds  to the continuous spectrum of purely 

dissipative internal  re laxat ion processes: 

+ o o  
-1 

K (t) = f A (r) ~ exp ( -  t / r )  d r ,  (3) 
0 

where A(T) is a smooth nonnegat ive function. In the Four ier  t ransform,  expression (3) takes the form 

--~- oo 

K F(m) = f A ( z )  (1 + iz'w) - l  d r .  (4) 
0 

Equations (2) and (4) yield the normalizing equali ty 

1 = f A (r) dr .  (5)  
0 

In addit ion,  the integral  convergence results  f rom condition 3) 

1 
k 1 = f r -  A ( r )  dT < + ~o. (6) 

o 

Relat ions (3)-(6)  are  suffice to carry out condi t ions  I ) -4)  for the relaxational kernel.  From express ion (4) 

i! follows that  the function KF(W) i s  holomorphic  with a cut a long the beam Re w = 0, Im w > 0. Us ing  a 

S o k h o t s k i i - P l e m e l  formula,  it is simple to calculate the function KF(oJ) on the cut shores:  

KF+ = g F (iy + e )  = L 1 (y)  - -  ~ L  2 ( y ) ,  

KF_ = K F ( i y  - E) = Z 1 (y )  + / ~ L  2 (y),  

(7) 

+oo 

L 1 (y) = V.p. f z -1 A ( z  - l )  ( z -  y)-�94 
0 

d z  , 

Cz (y) = y-  ~ A (y- l ) .  

Here and  below, y > 0; c is an infinitesimal positive number .  

Now we consider a l inear problem on the LRC in a cylindrically symmetr ic  s ta tement  (i.e., for a vertical 

well) in the case where  there is only one productive layer.  The  pressure field dynamics  is de te rmined  by  the  

integro-different ial  equation [ t0  ] 

+ o o  
0 
O~t p (tO'r) =to f K ( t  0 -  t) A p ( t , r ) d t ,  (8) 

- -oo  

where x = k E / ( m l t ) ;  A ~- O2/Or 2 + r - l o / o r ;  E = ( E l  1 + (m -1 - 1 ) E z l )  -1. The  pa rame te r  r changes within the 

limits r I < r < r 2. 
T h e  pressure  on the well bottom is de te rmined  by l iquid-column dynamics 

Op ]a = v (q - Q) . (9) 
- : ~  r = r l  I 
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Here  q = q(t)  = 2 f  K ( t  0 - t )OrP(t ,  r l ) d t ,  2 = 27/:rlhkp/~ -1,  v = S - l g ,  Q = Q ( t )  is a given funct ion tha t  charac te r izes  
--OO 

the mass  removal of l iquid f rom the well. 

On the supply  c on t ou r  the p ressu re  equals  the given bed pressure  Pbed 

p ( l ,  r2)  = P b e d "  ( 1 0 )  

Hereaf ter ,  we employ  a sys tem of m e a s u r e m e n t  units, in which the  following equalities a re  fulfil led: 

tr = r 1 = t . (11) 

The  quant i ty  tr has  the  d imens iona l i t y  12 / t  (l is the length) ,  t he re fo re  condi t ion (11) fixes the  uni t  length 

and  uni t  time. 

We will solve p rob lem (8)-(10)  for  the  case when the selection func t ion  Q = Q(t) at the ins t an t  of  t ime t = 

0 changes  over ab rup t ly  f rom one cons tan t  va lue  to another :  

Qo, t_<0, 
Q ( t ) =  Q1 ,  t > 0 .  

The  process when Ql = 0 is usual ly  cal led the  level recovery.  

We in t roduce a new unknown  func t ion  

dO = dO (t, r) = p (t, r) - Pbed Qo In ( r / r 2 )  . 

The  function ~o(t) = ~ ( t ,  1) sets to ze ro  at negative times, whe reas  at positive t imes it cha rac te r i zes  the 

change  in the bot tom pressu re  af ter  the c h a n g e - o v e r  of the regime. In the  case  of small debits ,  where  h y d r o d y n a m i c  

effects in a well shaf t  can  be neglected,  this  funct ion  is l inearly re la ted  to the  change  in the liquid co lumn.  

Per forming the  Four i e r  t r a n s f o r m a t i o n  in Eqs. (8)- (10) ,  we ob ta in  the  second-o rde r  o r d i n a r y  different ial  

equat ion 

(A - a 2) ~ F  = 0 (12) 

with b o u n d a r y  condi t ions  

iaoqb F -- r F = r/ (leo + e) 1 (13) 
r = l  

where  ~ = v/l; r /=  v ( Q l  - Qo); the complex  funct ion  a = a(co) is d e t e r m i n e d  f rom the relat ion a 2 = i~o /Kv(~o) ,  Re 

a>__0. 

The  funct ion a ( w )  is analyt ic  with a cut  a long the beam Re ~o = 0, lm oJ > 0 [9, 10 I. It is ea sy  to calculate  

the values on the cut  shores :  

c~+ = ct ( iy  + e) = iy 1 /2  (KF+) - 1 / 2  -, (14) 

c~ = a ( i y - -  r = - iy 1 /2  (KF_) - 1 / 2 .  (15) 

Problem (12) - (13)  has  the fol lowing solution:  

dP F = A o K  0 (ar )  + A l l  0 ( a r ) ,  (16) 
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Fig. 1. C o n t o u r  of in tegra t ion  for  in tegra l  (18). 

A0 GI 1 gai 0 (ar2) A I G I  1 = , = - ~pK 0 (ar2) , 

G 1 = I 0 (ar2) (io3K 0 (a) + ~K F a K  1 (a)) - 

- -  K 0 (arz)  (i0910 ( a )  - -  ~K F a I  1 ( a ) ) ,  

-1  
= r/(io3 + e) , 

where  Kn(z)  a n d  In(z) a re  the  M a c d o n a l d  funct ions  [13 ]. 
W e  will seek  an  i n t e r m e d i a t e  a sympto t i c s  for  the  LRC,  w h e n  the  effect of f in i teness  of the  supp ly  c o n t o u r  

rad ius  r2 is ins igni f icant .  Le t t ing  r2 in Eq. (17) go to infinity a n d  us ing  a sympto t i c  forms  for  the  Macdona ld  f u n c t i o n s  

[13 ], a f t e r  fu l f i l lment  of the  inve r se  Four i e r  t r ans fo rmat ion ,  for  the  funct ion ~o we ob ta in  the  express ion :  

~o (t) = ~/ (2~) -1 f (iw + e) -1 exp  (ioot)f 1 (w) dw ,  (17)  

- 1  
fl (o3) = KO (a) (io3K 0 (a) + ~K v a K  1 (a)) 

F o r m u l a  (17) r e p r e s e n t s  ~o(t) in the  fo rm of a funct ional  of the  ke rne l  K. We will seek  the  lead ing  a s y m p t o t i c s  of  

this f unc t i ona l  a t  large t imes  t, which  however  a re  a s sumed  to be  c o m p a r a b l e  with in te rna l  r e l axa t ion  t imes .  T o  do  

this,  it is n e c e s s a r y ,  a cco rd ing  to the  p rocedure  of [9, 10], to leave  in express ion  (17) the  leading t e r m s  in t he  

limit o3 ~ 0, bu t  this l imit  m u s t  not  be  t aken  for  an a r g u m e n t  of the  Four ie r  t r ans fo rm of the  kernel .  In  a d d i t i o n ,  

it is n e c e s s a r y  to leave  a con t r ibu t ion  re la ted  to the f in i teness  of the  well volume,  s ince the  di rect  t r a n s i t i o n  

o3 --- 0 l e a d s  to an  a s y m p t o t i c s  t ha t  co inc ides  formal ly  with tha t  fo r  the  P R C  [10]. 

A f t e r  the  ind ica ted  t r a n s f o r m a t i o n s ,  we obta in  the e x p r e s s i o n  

~o (t) = r/ (2~) --I f (io3 + e) -1 exp  (io3t)f 2 (o3) do3, 08) 

]'2 (w) = 2-1 In (io3) (2-1 io3 In (ia~) - ~KF) -1 . 

N o w  we t r a n s f o r m  the  in tegra l  over  the real  axis  in f o r m u l a  (18) into an in tegra l  over  the  con tou r  C ( see  

Fig. 1) wi th  a l lowance  for  Eqs. (7),  (14),  (15). Resolving the  i n t e g r a n d s ,  we derive: 

~p (t) = - (Z7~) - I  qi (/~ In e + 11~ + I2~), (19) 
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+ o o  
-1 

Ile = iar f y exp (-- yt) dy , 
E 

q-r 

12 e = f y - 1 0 C  2 (iv + e) - f2 (iy -- e) -- b-r) exp (-- yt) d y .  
g 

Here  e is the radius of the infinitely small circle along which the point to -- 0 passes (see Fig. 1). To  pass to the 

limit e ~ 0, in formula (20) we must use two additional formulas from [14 ], namely,  formula No. 3.352.4: 

and formula No. 8.214.1 

q-oo 

f e x p ( -  bz) dz = _ ex p (ab )  E i ( -  ab) ( a , b > 0 ) "  
0 a W z  

(20) 

Ei(z )  = C + i n ( -  z) + ~ z n ( n n ! ) - I  ( z <  0 ) .  (21) 
n=l 

We note that the integral 12e converges for e --, 0. When e --, 0, the limit 11,. js calculated f rom formulas 

(20) and (21). As a result,  expression (19) takes a form that is free of the parameter  e: 

~o (t) = (2~)-1 r / (~  In t + ~ in C + ii2o)- (22) 

We write the principal term of the asymptotics for 120 

12o = ( -  i In tJ ( t ) ) ,  (23) 

= rc f y -  ( y - l A ( y - 1 ) +  y) I ~ - l y ( I n y + i . T r ) - K v + l  - 2  
o 

exp ( -  yt) d y .  

Formulas (22) and (23) give a solution in general  form for the problem of the LRC. However ,  practical 

applications on interpretat ion of experimental LRC require a specific form of the function J( t ) .  Th e  asymptotics  of 

J( t )  at large t is de termined  by the asymptotics of the weight function A(r) at large relaxation t imes z. Suppose 

that at large T there  is a power spectrum 

- 1 - 8  A(z') ~ a  0t- , 0 < / . 4 <  1. (24) 

Assumption (24) is consistent with the convergence condition of integral (6). From Eqs. (23) and (24) we 

find the asymptotics of J( t )  at large t: 

.t (t) -- ~ - 1  (alt-~ + ~ -1 t -1 ) ,  al = aor (fl). (25) 

where F(z) is a gamma-funct ion [15]. 

Substituting asymptotics  (25) into Eq. (23), we obtain a formula for the LRC for the power spectrum of 

internal relaxation times. As compared to the asymptotics for classical Darcy law (corresponding to the case a0 = 

0), this formula contains two additional fitting parameters ,  namely,/4 and al.  Therefore ,  in principle, by means of 

the LRC it is possible to determine simultaneously the permeability of a collector and the relaxat ional  charac- 

teristics. 

N O T A T I O N  

t, to, time; x i, x i, Cartes ian coordinates; co, frequency;  U i, velocity of filtration; k, permeabil i ty;  m, porosity; 

/~, shear  viscosity of fluid; p, Pbed, pressure; p,  mass densi ty;  U, gravitational potential; A = A(z), weight function; 

kl ,  ao, al ,  [3, parameters  that  characterize the relaxational  kernel; E1 and E2, volume elasticity m o d u l u s  of fluid 
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and rock skeleton; E-- (El -1 + (m -1 + (m -1 - l )E21)- l ;  r, distance from the well axis; A, Laplace operator; rl, 
radius of the well bottom; r2, radius of the supply contour; q = q(t), mass inflow of liquid from the collector to the 

well; h, thickness of productive layer; S, area of the effective cross section of the well; g, free fall acceleration; y, 

z, 2, v, ~, Q0, Q1, A0, A1, auxiliary parameters; L1, L2, ~ ,  9o, ct, ~p, f l ,  fz, lle, 12E, auxiliary functions; C, Euler 

constant. 

REFERENCES 

1. Yu. M. Molokovich, N. N. Neprimerov, V. I. Pikuza, and A. V. Shtanin, Relaxational Filtration lin Russian l, 

Kazan (1980). 
2. Yu. M. Molokovich and P. P. Osipov, Foundations of the Theory of Relaxational Filtration [in Russian ], Kazan 

(1987). 
3. Yu. M. Molokovich, in: Problems of the Filtration Theory and Mechanics of Processes of Petroleum Output 

Improvement [in Russian], Moscow (1987), pp. 142-153. 

4. O. Yu. Dinariev and O. V. Nikolaev, Prikl. Mekh. Math., 53, No. 3,469-475 (1989). 

5. O. Yu. Dinariev, Inzh.-Fiz. Zh., 58, No. 1, 78-82 (1990). 
6. O. Yu. Dinariev and O. V. Nikolaev, DokL Akad. Nauk SSSR,  313, No. 1, 31-36 (1990). 

7. O. Yu. Dinariev and A. A. Shapiro, Zh. Tekh. Fiz., 66, Vyp. 1, 24-34 (1996). 
8. O. Yu. Dinariev, PrikL Mekh. Tekh. Fiz., No. 5, 106-111 (1991). 

9. O. Yu. Dinariev, Prikl. Mekh. Tekh. Fiz., 36, No. 2, 119-125 (1995). 

10. O. Yu. Dinariev, PrikL Mekh. Tekh. Fiz., 38, No. 5, 110-116 (1997). 

11. O. Yu. Dinariev, DokL Akad. Nauk SSSR, 301, No. 3, 1095-1097 (1988). 

12. I. Slane and G. Weiss, Introduction to Harmonic Analysis on Euclidean Spaces ]Russian translation ], Moscow 

(1974). 
! . 

13. G.Bateman and A. Erdelyl, Higher Transcendental Functions. Bessel Functions, Functions of a Parabolic 

Cylinder, Orthogonal Polynomials [Russian translation 1, Moscow (1974). 

14. I.S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian 1, Moscow (1963). 
15. G. Bateman and A. Erdelyi, Higher Transcendental Functions. Hypergeometric Function, Legendre Function 

]Russian translation 1, Moscow (1973). 

826 


